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Abstract

Function approximation is essential to reinforcement learning, but
the standard approach of approximating a value function and deter-
mining a policy from it has so far proven theoretically intractable.
In this paper we explore an alternative approach in which the policy
is explicitly represented by its own function approximator, indepen-
dent of the value function, and is updated according to the gradient
of expected reward with respect to the policy parameters. Williams’s
REINFORCE method and actor–critic methods are examples of this
approach. Our main new result is to show that the gradient can
be written in a form suitable for estimation from experience aided
by an approximate action-value or advantage function. Using this
result, we prove for the first time that a version of policy iteration
with arbitrary differentiable function approximation is convergent to
a locally optimal policy.

Large applications of reinforcement learning (RL) require the use of generalizing func-
tion approximators such neural networks, decision-trees, or instance-based methods.
The dominant approach for the last decade has been the value-function approach, in
which all function approximation effort goes into estimating a value function, with
the action-selection policy represented implicitly as the “greedy” policy with respect
to the estimated values (e.g., as the policy that selects in each state the action with
highest estimated value). The value-function approach has worked well in many appli-
cations, but has several limitations. First, it is oriented toward finding deterministic
policies, whereas the optimal policy is often stochastic, selecting different actions with
specific probabilities (e.g., see Singh, Jaakkola, and Jordan, 1994). Second, an arbi-
trarily small change in the estimated value of an action can cause it to be, or not be,
selected. Such discontinuous changes have been identified as a key obstacle to estab-
lishing convergence assurances for algorithms following the value-function approach
(Bertsekas and Tsitsiklis, 1996). For example, Q-learning, Sarsa, and dynamic pro-
gramming methods have all been shown unable to converge to any policy for simple
MDPs and simple function approximators (Gordon, 1995, 1996; Baird, 1995; Tsit-
siklis and van Roy, 1996; Bertsekas and Tsitsiklis, 1996). This can occur even if the
best approximation is found at each step before changing the policy, and whether the
notion of “best” is in the mean-squared-error sense or the slightly different senses of
residual-gradient, temporal-difference, and dynamic-programming methods.
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In this paper we explore an alternative approach to function approximation in RL.
Rather than approximating a value function and using that to compute a determinis-
tic policy, we approximate a stochastic policy directly using an independent function
approximator with its own parameters. For example, the policy might be represented
by a neural network whose input is a representation of the state, whose output is
action selection probabilities, and whose weights are the policy parameters. Let θ
denote the vector of policy parameters and ρ the performance of the corresponding
policy (e.g., the average reward per step). Then, in the policy gradient approach, the
policy parameters are updated approximately proportional to the gradient:

∆θ ≈ α
∂ρ

∂θ
, (1)

where α is a positive-definite step size. If the above can be achieved, then θ can
usually be assured to converge to a locally optimal policy in the performance measure
ρ. Unlike the value-function approach, here small changes in θ can cause only small
changes in the policy and in the state-visitation distribution.

In this paper we prove that an unbiased estimate of the gradient (1) can be obtained
from experience using an approximate value function satisfying certain properties.
Williams’s (1988, 1992) REINFORCE algorithm also finds an unbiased estimate of
the gradient, but without the assistance of a learned value function. REINFORCE
learns much more slowly than RL methods using value functions and has received
relatively little attention. Learning a value function and using it to reduce the variance
of the gradient estimate appears to be essential for rapid learning. Jaakkola, Singh
and Jordan (1995) proved a result very similar to ours for the special case of function
approximation corresponding to tabular POMDPs. Our result strengthens theirs and
generalizes it to arbitrary differentiable function approximators.

Our result also suggests a way of proving the convergence of a wide variety of algo-
rithms based on “actor-critic” or policy-iteration architectures (e.g., Barto, Sutton,
and Anderson, 1983; Sutton, 1984; Kimura and Kobayashi, 1998). In this paper we
take the first step in this direction by proving for the first time that a version of
policy iteration with general differentiable function approximation is convergent to
a locally optimal policy. Baird and Moore (1999) obtained a weaker but superfi-
cially similar result for their VAPS family of methods. Like policy-gradient methods,
VAPS includes separately parameterized policy and value functions updated by gra-
dient methods. However, VAPS methods do not climb the gradient of performance
(expected long-term reward), but of a measure combining performance and value-
function accuracy. As a result, VAPS does not converge to a locally optimal policy,
except in the case that no weight is put upon value-function accuracy, in which case
VAPS degenerates to REINFORCE. Similarly, Gordon’s (1995) fitted value iteration
is also convergent and value-based, but does not find a locally optimal policy.

1 Policy Gradient Theorem

We consider the standard reinforcement learning framework (see, e.g., Sutton and
Barto, 1998), in which a learning agent interacts with a Markov decision process
(MDP). The state, action, and reward at each time t ∈ {0, 1, 2, . . .} are denoted st ∈
S, at ∈ A, and rt ∈ # respectively. The environment’s dynamics are characterized by
state transition probabilities, Pa

ss′ = Pr {st+1 = s′ | st = s, at = a}, and expected re-
wards Ra

s = E {rt+1 | st = s, at = a}, ∀s, s′ ∈ S, a ∈ A. The agent’s decision making
procedure at each time is characterized by a policy, π(s, a, θ) = Pr {at = a|st = s, θ},
∀s ∈ S, a ∈ A, where θ ∈ #l, for l << |S|, is a parameter vector. We assume that π

is diffentiable with respect to its parameter, i.e., that ∂π(s,a)
∂θ exists. We also usually

write just π(s, a) for π(s, a, θ).
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With function approximation, two ways of formulating the agent’s objective are use-
ful. One is the average reward formulation, in which policies are ranked according to
their long-term expected reward per step, ρ(π):

ρ(π) = lim
n→∞

1
n
E {r1 + r2 + · · · + rn | π} =

∑

s

dπ(s)
∑

a

π(s, a)Ra
s ,

where dπ(s) = limt→∞ Pr {st = s|s0,π} is the stationary distribution of states under
π, which we assume exists and is independent of s0 for all policies. In the average
reward formulation, the value of a state–action pair given a policy is defined as

Qπ(s, a) =
∞∑

t=1

E {rt − ρ(π) | s0 = s, a0 = a,π}, ∀s ∈ S, a ∈ A.

The second formulation we cover is that in which there is a designated start state
s0, and we care only about the long-term reward obtained from it. We will give our
results only once, but they will apply to this formulation as well under the definitions

ρ(π) = E

{ ∞∑

t=1

γt−1rt

∣∣∣∣ s0,π

}
and Qπ(s, a) = E

{ ∞∑

k=1

γk−1rt+k

∣∣∣∣ st = s, at = a,π

}
.

where γ ∈ [0, 1] is a discount rate (γ = 1 is allowed only in episodic tasks). In this
formulation, we define dπ(s) as a discounted weighting of states encountered starting
at s0 and then following π: dπ(s) =

∑∞
t=0 γ

tPr {st = s|s0,π}.
Our first result concerns the gradient of the performance metric with respect to the
policy parameter:

Theorem 1 (Policy Gradient). For any MDP, in either the average-reward or
start-state formulations,

∂ρ

∂θ
=

∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

Qπ(s, a). (2)

Proof: See the appendix.

Marbach and Tsitsiklis (1998) describe a related but different expression for the
gradient in terms of the state-value function, citing Jaakkola, Singh, and Jordan
(1995) and Cao and Chen (1997). In both that expression and ours, the key point
is that their are no terms of the form ∂dπ(s)

∂θ : the effect of policy changes on the
distribution of states does not appear. This is convenient for approximating the
gradient by sampling. For example, if s was sampled from the distribution obtained
by following π, then

∑
a

∂π(s,a)
∂θ Qπ(s, a) would be an unbiased estimate of ∂ρ

∂θ . Of
course, Qπ(s, a) is also not normally known and must be estimated. One approach
is to use the actual returns, Rt =

∑∞
k=1 rt+k − ρ(π) (or Rt =

∑∞
k=1 γ

k−1rt+k in
the start-state formulation) as an approximation for each Qπ(st, at). This leads to
Williams’s episodic REINFORCE algorithm, ∆θt ∝ ∂π(st,at)

∂θ Rt
1

π(st,at)
(the 1

π(st,at)

corrects for the oversampling of actions preferred by π), which is known to follow ∂ρ
∂θ

in expected value (Williams, 1988, 1992).

2 Policy Gradient with Approximation

Now consider the case in which Qπ is approximated by a learned function approxima-
tor. If the approximation is sufficiently good, we might hope to use it in place of Qπ

in (2) and still point roughly in the direction of the gradient. For example, Jaakkola,
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Singh, and Jordan (1995) proved that for the special case of function approximation
arising in a tabular POMDP one could assure positive inner product with the gra-
dient, which is sufficient to ensure improvement for moving in that direction. Here
we extend their result to general function approximation and prove equality with the
gradient.

Let fw : S × A → # be our approximation to Qπ, with parameter w. It is natural
to learn fw by following π and updating w by a rule such as ∆wt ∝ ∂

∂w [Q̂π(st, at) −
fw(st, at)]2 ∝ [Q̂π(st, at) − fw(st, at)]∂fw(st,at)

∂w , where Q̂π(st, at) is some unbiased
estimator of Qπ(st, at), perhaps Rt. When such a process has converged to a local
optimum, then

∑

s

dπ(s)
∑

a

π(s, a)
[
Qπ(s, a) − fw(s, a)

]∂fw(s, a)
∂w

= 0. (3)

Theorem 2 (Policy Gradient with Function Approximation). If fw satisfies
(3) and is compatible with the policy parameterization in the sense that

∂fw(s, a)
∂w

=
∂π(s, a)

∂θ

1
π(s, a)

, (4)

then
∂ρ

∂θ
=

∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

fw(s, a). (5)

Proof: Combining (3) and (4) gives
∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

[
Qπ(s, a) − fw(s, a)

]
= 0 (6)

which tells us that the error in fw(s, a) is orthogonal to the gradient of the policy
parameterization. Because the expression above is zero, we can subtract it from the
policy gradient theorem (2) to yield
∂ρ

∂θ
=

∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

Qπ(s, a) −
∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

[
Qπ(s, a) − fw(s, a)

]

=
∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

[Qπ(s, a) −Qπ(s, a) + fw(s, a)]

=
∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

fw(s, a). Q.E.D.

3 Application to Deriving Algorithms and Advantages

Given a policy parameterization, Theorem 2 can be used to derive an appropriate
form for the value-function parameterization. For example, consider a policy that is
a Gibbs distribution in a linear combination of features:

π(s, a) =
eθ

Tφsa

∑
b e

θTφsb
, ∀s ∈ S, s ∈ A,

where each φsa is an l-dimensional feature vector characterizing state-action pair s, a.
Meeting the compatibility condition (4) requires that

∂fw(s, a)
∂w

=
∂π(s, a)

∂θ

1
π(s, a)

= φsa −
∑

b

π(s, b)φsb,
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so that the natural parameterization of fw is

fw(s, a) = wT

[
φsa −

∑

b

π(s, b)φsb

]
.

In other words, fw must be linear in the same features as the policy, except normalized
to be mean zero for each state. Other algorithms can easily be derived for a variety
of nonlinear policy parameterizations, such as multi-layer backpropagation networks.

The careful reader will have noticed that the form given above for fw requires
that it have zero mean for each state:

∑
a π(s, a)fw(s, a) = 0, ∀s ∈ S. In this

sense it is better to think of fw as an approximation of the advantage function,
Aπ(s, a) = Qπ(s, a) − V π(s) (much as in Baird, 1993), rather than of Qπ. Our
convergence requirement (3) is really that fw get the relative value of the ac-
tions correct in each state, not the absolute value, nor the variation from state to
state. Our results can be viewed as a justification for the special status of advan-
tages as the target for value function approximation in RL. In fact, our (2), (3),
and (5), can all be generalized to include an arbitrary function of state added to
the value function or its approximation. For example, (5) can be generalized to
∂ρ
∂θ =

∑
s d

π(s)
∑

a
∂π(s,a)

∂θ [fw(s, a) + v(s)] ,where v : S → # is an arbitrary function.
(This follows immediately because

∑
a

∂π(s,a)
∂θ = 0, ∀s ∈ S.) The choice of v does not

affect any of our theorems, but can substantially affect the variance of the gradient
estimators. The issues here are entirely analogous to those in the use of reinforce-
ment baselines in earlier work (e.g., Williams, 1992; Dayan, 1991; Sutton, 1984). In
practice, v should presumably be set to the best available approximation of V π. Our
results establish that that approximation process can proceed without affecting the
expected evolution of fw and π.

4 Convergence of Policy Iteration with Function Approximation

Given Theorem 2, we can prove for the first time that a form of policy iteration with
function approximation is convergent to a locally optimal policy.

Theorem 3 (Policy Iteration with Function Approximation). Let π
and fw be any differentiable function approximators for the policy and value
function respectively that satisfy the compatibility condition (4) and for which
maxθ,s,a,i,j |∂

2π(s,a)
∂θi∂θj

| < B < ∞. Let {αk}∞k=0 be any step-size sequence such that
limk→∞ αk = 0 and

∑
k αk = ∞. Then, for any MDP with bounded rewards, the

sequence {(θk, wk)}, defined by any θ0, πk = π(·, ·, θk), and

wk = w such that
∑

s

dπk(s)
∑

a

πk(s, a)[Qπk(s, a) − fw(s, a)]
∂fw(s, a)

∂w
= 0

θk+1 = θk + αk

∑

s

dπk(s)
∑

a

∂πk(s, a)
∂θ

fwk(s, a),

converges such that limk→∞
∂ρ(πk)

∂θ = 0.

Proof: Our Theorem 2 assures that the θk update is in the direction of the gradient.
The bounds on ∂2π(s,a)

∂θi∂θj
and on the MDP’s rewards together assure us that ∂2ρ

∂θi∂θj
is also bounded. These, together with the step-size requirements, are the necessary
conditions to apply Proposition 3.5 from page 96 of Bertsekas and Tsitsiklis (1996),
which assures convergence to a local optimum. Q.E.D.
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Appendix: Proof of Theorem 1

We prove the theorem first for the average-reward formulation and then for the start-
state formulation.

∂V π(s)
∂θ

def=
∂

∂θ

∑

a

π(s, a)Qπ(s, a) ∀s ∈ S

=
∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

∂

∂θ
Qπ(s, a)

]

=
∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

∂

∂θ

[
Ra

s − ρ(π) +
∑

s′

Pa
ss′V

π(s′)

]]



www.manaraa.com

  

=
∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

[
−∂ρ

∂θ
+

∑

s′

Pa
ss′

∂V π(s′)
∂θ

]]

Therefore,

∂ρ

∂θ
=

∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

∑

s′

Pa
ss′

∂V π(s′)
∂θ

]
− ∂V π(s)

∂θ

Summing both sides over the stationary distribution dπ,

∑

s

dπ(s)
∂ρ

∂θ
=

∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

Qπ(s, a) +
∑

s

dπ(s)
∑

a

π(s, a)
∑

s′

Pa
ss′

∂V π(s′)
∂θ

−
∑

s

dπ(s)
∂V π(s)

∂θ
,

but since dπ is stationary,

∑

s

dπ(s)
∂ρ

∂θ
=

∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

Qπ(s, a) +
∑

s′

dπ(s′)
∂V π(s′)

∂θ

−
∑

s

dπ(s)
∂V π(s)

∂θ

∂ρ

∂θ
=

∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

Qπ(s, a). Q.E.D.

For the start-state formulation:
∂V π(s)

∂θ
def=

∂

∂θ

∑

a

π(s, a)Qπ(s, a) ∀s ∈ S

=
∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

∂

∂θ
Qπ(s, a)

]

=
∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

∂

∂θ

[
Ra

s +
∑

s′

γPa
ss′V

π(s′)

]]

=
∑

a

[
∂π(s, a)

∂θ
Qπ(s, a) + π(s, a)

∑

s′

γPa
ss′

∂

∂θ
V π(s′)

]
(7)

=
∑

x

∞∑

k=0

γkPr(s → x, k,π)
∑

a

∂π(x, a)
∂θ

Qπ(x, a),

after several steps of unrolling (7), where Pr(s → x, k,π) is the probability of going
from state s to state x in k steps under policy π. It is then immediate that

∂ρ

∂θ
=

∂

∂θ
E

{ ∞∑

t=1

γt−1rt

∣∣∣∣ s0,π

}
=

∂

∂θ
V π(s0)

=
∑

s

∞∑

k=0

γkPr(s0 → s, k,π)
∑

a

∂π(s, a)
∂θ

Qπ(s, a)

=
∑

s

dπ(s)
∑

a

∂π(s, a)
∂θ

Qπ(s, a). Q.E.D.


